The correct option is
C 12Let
I=∫5x+4√x2+3x+2dxHere, numerator can be written as
5x+4=Addx(x2+3x+2)+B5x+4=A(2x+3)+B .....
(1)⇒5x+4=2Ax+3A+BOn comparing, we get
2A=5 ;
3A+B=4Solving these eqns we get
A=52;B=−72Put these values in
(1),
5x+4=52(2x+3)−72So the given integral becomes
∫5x+4√x2+3x+2dx=52∫2x+3√x2+3x+2dx−72∫1√x2+3x+2dxPut
x2+3x+2=t in first integral
⇒(2x+3)dx=dt=52∫1√tdt−72∫1√(x+32)2−(12)2dxPut
x+32=udx=duI=5√t−72∫1√u2−122du=5√x2+3x+2−72log|u+√u2−(12)2|+CI=5√x2+3x+2−72log|x+32+√(x+32)2−(12)2|+CI=5√x2+3x+2−72log|x+32+√x2+3x+2|+CHence, A=5,B=72
∴A+2B=5+7=12