I=∫3π8π8cosxsinx+cosxdx ∫a0f(x)dx=∫a0f(a+b−x)dx ∫3π8π8cosxsinx+cosxdx=∫3π8π8sinxcosx+sinxdx=I 2I=∫3π8π8⋅1⋅dx 2I=π4 I=π8
The maximum value of sin(x+π6)+cos(x+π6) in the
interval (0,π2) is attained at