Let I=∫e2x−3+74−3(x/2)+sin(3x−12)+cos(25x−2)+α3x+2dx=I1+I2+I3+I4+I5
Where
I1=∫e2x−3dx=12e2x−3
I2=∫74−3(x/2)dx
Put t=4−3x2⇒dt=−32dx
I2=−23∫7tdt=−237tlog7=−23⋅74−3(x/2)1log7
I3=∫sin(3x−12)dx=−13cos(3x−12)
I4=∫cos(25x−2)dx=52sin(25x−2)
I5=∫a3x+2dx=13a3x+2loga
Therefore
I=12e2x−3−23⋅74−3(x/2)1log7−13cos(3x−12)+52sin(25x−2)+13a3x+2loga