Applying integration by parts,
I=∫eaxcosbxdx
I=eax∫cosbxdx−∫aeax(∫cosbxdx)dx
I=eax[sinbxb]−∫aeax(sinbxb)dx
I=eaxsinbxb−ab∫eaxsinbxdx
Let's use integration by parts again,
I=eaxsinbxb−ab[eax∫sinbxdx−∫aeax(∫sinbxdx)dx]I=eaxsinbxb−ab[eax[−cosbxb]−∫aeax(−cosbxb)dx]I=eaxsinbxb−ab[−eaxcosbxb+ab∫eaxcosbxdx]
But we know that,
I=∫eaxcosbxdx
So,
I=eaxsinbxb−ab[−eaxcosbxb+abI]I=eaxsinbxb+aeaxcosbxb2−a2b2I(1+a2b2)I=eaxb2[acosbx+bsinbx]∴I=eaxa2+b2[acosbx+bsinbx]+c
Now a=−3 , b=7
∴I=e−3x(−3)2+72[−3cos7x+7sin7x]+cI=e−3x58[−3cos7x+7sin7x]+cI=e−3x√58[−3√58cos7x+7√58sin7x]+c
Hence by comparing,
sinα=−3√58,cosα=7√58.