wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

e3xcos7xdx=e3x58[sinαcos7x+cosαsin7x]+c, then values of sinα and cosα are

A
358,758
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
358,758
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
358,758
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
758,358
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 358,758

Applying integration by parts,

I=eaxcosbxdx

I=eaxcosbxdxaeax(cosbxdx)dx

I=eax[sinbxb]aeax(sinbxb)dx

I=eaxsinbxbabeaxsinbxdx

Let's use integration by parts again,

I=eaxsinbxbab[eaxsinbxdxaeax(sinbxdx)dx]I=eaxsinbxbab[eax[cosbxb]aeax(cosbxb)dx]I=eaxsinbxbab[eaxcosbxb+abeaxcosbxdx]

But we know that,

I=eaxcosbxdx

So,

I=eaxsinbxbab[eaxcosbxb+abI]I=eaxsinbxb+aeaxcosbxb2a2b2I(1+a2b2)I=eaxb2[acosbx+bsinbx]I=eaxa2+b2[acosbx+bsinbx]+c

Now a=3 , b=7

I=e3x(3)2+72[3cos7x+7sin7x]+cI=e3x58[3cos7x+7sin7x]+cI=e3x58[358cos7x+758sin7x]+c

Hence by comparing,

sinα=358,cosα=758.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon