wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

e7xsin5x=e7x74sin(5xα)+c,then α=

A
tan157
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan175
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan115
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tan117
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B tan157

We'll apply integration by parts,

I=eaxsinbxdx

I=eaxsinbxdxaeax(sinbxdx)dx

I=eax[cosbxb]aeax(cosbxb)dx

I=eaxcosbxb+abeaxcosbxdx

Applying integration by parts again,

I=eaxcosbxb+ab[eaxcosbxdxaeax(cosbxdx)dx]

I=eaxcosbxb+ab[eax[sinbxb]aeax(sinbxb)dx]

I=eaxcosbxb+ab[eaxsinbxbabeaxsinbxdx]

But we know that,

I=eaxsinbxdx

So,

I=eaxcosbxb+ab[eaxsinbxbabI]I=eaxcosbxb+aeaxsinbxb2a2b2I(1+a2b2)I=eaxb2[asinbxbcosbx]I=eaxa2+b2[asinbxbcosbx]+c

Let us remember the above formula.

Now simplifying the above given question,

I=e7xsin5xdx=e7x74sin(5xα)+c=e7x74[cosαsin5xsinαcos5x]+c....(1)

Also, by using the calculated formula,

I=e7x74[7sin5x5cos5x]+c

I=e7x74[774sin5x574cos5x]+c....(2)

Now comparing, 1 & 2

e7x74[774sin5x574cos5x]+c=e7x74[cosαsin5xsinαcos5x]+c

By comparing we get,

sinα=574,cosα=774tanα=57,α=tan157


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon