We'll apply integration by parts,
I=∫eaxsinbxdx
I=eax∫sinbxdx−∫aeax(∫sinbxdx)dx
I=eax[−cosbxb]−∫aeax(−cosbxb)dx
I=−eaxcosbxb+ab∫eaxcosbxdx
Applying integration by parts again,
I=−eaxcosbxb+ab[eax∫cosbxdx−∫aeax(∫cosbxdx)dx]
I=−eaxcosbxb+ab[eax[sinbxb]−∫aeax(sinbxb)dx]
I=−eaxcosbxb+ab[eaxsinbxb−ab∫eaxsinbxdx]
But we know that,
I=∫eaxsinbxdx
So,
I=−eaxcosbxb+ab[eaxsinbxb−abI]I=−eaxcosbxb+aeaxsinbxb2−a2b2I(1+a2b2)I=eaxb2[asinbx−bcosbx]∴I=eaxa2+b2[asinbx−bcosbx]+c
Let us remember the above formula.
Now simplifying the above given question,
I=∫e7xsin5xdx=e7x√74sin(5x−α)+c=e7x√74[cosαsin5x−sinαcos5x]+c....(1)
Also, by using the calculated formula,
I=e7x74[7sin5x−5cos5x]+c
I=e7x√74[7√74sin5x−5√74cos5x]+c....(2)
Now comparing, 1 & 2
e7x√74[7√74sin5x−5√74cos5x]+c=e7x√74[cosαsin5x−sinαcos5x]+c
By comparing we get,
sinα=5√74,cosα=7√74∴tanα=57,α=tan−157