I=∫eax.sin(bx+c)dx=∫sin(bx+c).eaxdx=sin(bx+c)∫(eaxdx)−∫(ddx)sin(bx+c)∫eaxdx∫dx=sin(bx+c)eaxa−∫b.cos(bx+c).eaxadx=sin(bx+c)eax−ba∫cos(bx+c).eax.dx
Again using integration by parts
=sin(bx+c)eax−ba(cos(bx+c)(∫eaxdx)−∫(ddxcos(b+c)∫eaxdx)dx)y=eaxsin(bx+c)−ba(cos(bx+c)eaxa−∫−b.sin(bx+c)eaxadx)=eaxsin(bx+c)−ba2cos(bx+c)eax−b2a2∫sin(bx+c)eaxdxI=eaxsin(bx+c)−ba2cos(bx+c)eax−b2a2II+b2a2I=sin(bx+c)eax−ba2cos(bx+c)eax⇒I=eax(1+b2a2)(sin(bx+c)−ba2cos(bx+c))