wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

eax.sin(bx+c)dx

Open in App
Solution

I=eax.sin(bx+c)dx=sin(bx+c).eaxdx=sin(bx+c)(eaxdx)(ddx)sin(bx+c)eaxdxdx=sin(bx+c)eaxab.cos(bx+c).eaxadx=sin(bx+c)eaxbacos(bx+c).eax.dx

Again using integration by parts

=sin(bx+c)eaxba(cos(bx+c)(eaxdx)(ddxcos(b+c)eaxdx)dx)y=eaxsin(bx+c)ba(cos(bx+c)eaxab.sin(bx+c)eaxadx)=eaxsin(bx+c)ba2cos(bx+c)eaxb2a2sin(bx+c)eaxdxI=eaxsin(bx+c)ba2cos(bx+c)eaxb2a2II+b2a2I=sin(bx+c)eaxba2cos(bx+c)eaxI=eax(1+b2a2)(sin(bx+c)ba2cos(bx+c))


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon