Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
esinx−esinx.secx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
xecosx−esinx.secx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xesinx+esinx.secx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bxesinx−esinx.secx I=∫[x(esinxcosx)−esinx(secxtanx)]dx Integrate by parts. [xesinx−∫esinx.1.dx]−[esinxsecx−∫esinxcosxsecxdx] =xesinx−esinx.secx other integrals cancel