∫etan−1x(1+x+x21+x2)dx
put tan−1x=t
x= tan t
dx=sec2t dt
∫et(1+tant+tan2t1+tan2t)sec2tdt
(sec2x−tan2x=1⇒1+tan2x=sec2x)
∫et(tant+sec2tsec2t)sec2tdt
∫et(tantsec2tsec2t+sec2tsec2tsec2t)dt
∫et(tant+sec2t)dt
∫ettantdt+∫etsec2tdt
Integrate by parts I1
tantet−∫sec2t∫etdt+∫etsec2tdt
tantet−∫sec2t∫etdt+∫etsec2tdt
=ettant+C
Now put t=tan−1x
=etan−1xtanx(tan−1x)+C
=etan−1x+C
=xetan−1x+C