The correct option is C √2ex/2sinx/2+c
∫ex2.sin(x2+π4)dxlet(x2+π4)=tdx2=dtdx=2dt⇒2∫et−π4sint⇒2eπ4∫etsint=sint.∫etdt−∫[dsintdt∫etdt]dt⇒2eπ4∫etsint=etsint+∫cost.etdt⇒2eπ4∫etsint=etsint+cost∫etdt−∫dcostdt∫etdt]dt⇒2eπ4∫etsint=etsint+cost.et−∫sint.etdt⇒∫etsint[2eπ4+1]=et(sint+cost)+c⇒∫etsint=√2etsin(t+π4)×eπ4(2+eπ4)+c=√2e(x2=π2)sin(x2+π2)2+eπ4.