The correct option is C −e−xcosec x+c
I=∫e−xcosec x (cotx+1)dx
Substitute, x=−t⇒dx=−dt
−∫etcosec (−t) (cot(−t)+1)dt
⇒∫etcosec t (−cott+1)dt
⇒∫et(cosec t−cosec t cott)dt
It is in the form of
∫ex(f(x)+f′(x))dx=exf(x)+c
∴I=etcosec t+c
I=e−xcosec(−x)+c
I=−e−xcosec x+c