sin3xcos2x=12[sin(3x+2x)+sin(3x−2x)]=12(sin5x+sinx)exsin3xcos2x=ex2(sin5x+sinx)∫ex(sin5x+sinx)dx=∫exsin5xdx+∫exsinxdx
Let ∫exsin5xdx=I
And ∫exsinxdx=J
J=12∫exsinxdx
In integration by parts take sinx as a function of 1 and ex as a function 2
⇒2J=∫exsinxdxexsinx−∫excosxdx
Again, on integration by parts.
2J=exsinx−[excosx+exsinx]2J=(sinx)ex−(cosx)ex−2J4J=ex(sinx−cosx)J=ex4(sinx−cosx)
Similarly we can get that
I=152ex(sin5x−cos5x)
Hence, ∫exsin3xcos2xdx
=12ex[126(sin5x−cos5x)+12(sinx−cosx)]+C