∫ex√e2x+1dx is equal to
(where C is integration constant)
A
ex2√e2x+1+12ln∣∣ex+√e2x+1∣∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12ln∣∣ex+√e2x+1∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ex2√ex+1+12ln∣∣ex+√e2x+1∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
14ln∣∣∣ex+√ex+1ex−√ex+1∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aex2√e2x+1+12ln∣∣ex+√e2x+1∣∣+C Let I=∫ex√e2x+1dx
Let ex=t ⇒exdx=dt⇒I=∫√t2+12dt=t2√t2+1+12log|t+√t2+1|+C∴I=ex2√e2x+1+12ln|ex+√e2x+1|+C[∵∫√x2+a2dx=x2√x2+a2+a22ln∣∣x+√x2+a2∣∣+C]