No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13x3ψ(x3)−∫x3ψ(x3)dx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
13x3ψ(x3)−∫x2ψ(x3)dx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13[x3ψ(x3)−∫x3ψ(x3)dx]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C13x3ψ(x3)−∫x2ψ(x3)dx+c Given, ∫f(x)dx=ψ(x) I=∫x5f(x3)dx put x3=t⇒x2dx=13dt ⇒I=13∫tf(t)dx =13[t∫f(t)dt−∫(∫f(t)dt)dt]+c =13[tψ(t)−∫(∫f(t)dt)dt]+c =13[x3ψ(x3)−∫3x2ψ(x3)dx]+c =13x3ψ(x3)−∫x2ψ(x3)dx+c