The correct option is A 12
∫11−cos4xdx=−12tanx+k√2tan−1(tanx√2)+C
Consider, ∫11−cos4xdx
=∫1sin2x(1+cos2x)dx
=∫sec4xtan2x(sec2x+1)dx
=∫(1+tan2x)sec2xtan2x(tan2x+2)dx
Put tanx=t
sec2xdx=dt
I=∫(1+t2)t2(t2+2)dt ....(1)
Resolving (1+t2)t2(t2+2) into partial fractions
1+t2t2(t2+2)=At+Bt2+Ct+Dt2+2 ....(2)
⇒1+t2=At(t2+2)+B(t2+2)+(Ct+D)t2
⇒B=12;A=0;C=0;D=12
Substituting these values in (2), we get
1+t2t2(t2+2)=12t2+12(t2+2)
Using this in (1), we get
∫(1+t2)t2(t2+2)dt=12∫1t2dt+12∫1(t2+2)dt
=−121t+1√2tan−1t√2+C
I=−121tanx+1√2tan−1(tanx√2)+C
Comparing with given , we get
k=12