The correct option is C 13log|x+1|−16log|x2−x+1|+1√3tan−1(2x−1√3)+c
I=∫11+x3dx
Let 11+x3=Ax+1+Bx+Cx2−x+1,
On comparing the terms we get,
A=13 , C=23 and B=−13
Hence, I=∫13(x+1)dx+∫−x3+23x2−x+1
I=13log|x+1|−16∫2x−1x2−x+1dx+12∫dxx2−x+1
I=13log|x+1|−16log|x2−x+1|+1√3tan−1(2x−1√3)
Hence, option A is correct