wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

12+sinx+cosxdx=ktan1[tan(x2)+1](k). Find the value of k.

Open in App
Solution

Let I=12+sinx+cosxdx
=12+2sin(x2)cos(x2)+cos2(x2)sin2(x2)dx
Divide numerator and denominator by cos2(x2)
I=sec2(x2)dx2[1+tan2(x2)]+2tan(x2)+1tan2(x2)
Put tanx2=t, we get
I=2dtt2+2t+3=2dt(t+1)2+(2)2
=21(2)tan1t+1(2)=2tan1[tan(x2)+1](2)

Hence, k=2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon