wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1cos(xa)cos(xb)dx

Open in App
Solution

1cos(xa)cos(xb)dx
=sin(ab)sin(ab)×1cos(xa)cos(xb)dx
=1sin(ab)sin(ab)cos(xa)cos(xb)dx
=1sin(ab)sin(ab+xx)cos(xa)cos(xb)dx
=1sin(ab)sin((xb)+(ax))cos(xa)cos(xb)dx
=1sin(ab)sin((xb)(xa))cos(xa)cos(xb)dx
Using sin(AB)=sinAcosBcosAsinB
Replace A by (xb), & B by (xa)
sin((xb)sin(xa))=sin(xb)cos(xa)cos(xb)sin(xa)
1sin(ab)sin(xb)(xa)cos(xa)cos(xb)dx
=1sin(ab)sin(xb)cos(xa)cos(xb)sin(xa)cos(xa)cos(xb)dx
=1sin(ab)(sin(xb)cos(xa)cos(xa)cos(xb)cos(xb)sin(xa)cos(xa)cos(xb))dx
=1sin(ab)[sin(xb)cos(xb)sin(xa)cos(xa)dx]
=1sin(ab)[tan(xb)tan(xa)dx]
=1sin(ab)[tan(xb)dxtan(xa)dx]
[Note : tanxdx=log|cosx|+C]
=1sin(ab)[log|cos(xb)|+log|cos(xa)|]+C
=1sin(ab)[log|cos(xa)|log|cos(xb)|]+C
=1sin(ab)logcos(xa)cos(xb)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon