∫1secx+cosecxdx=12[−cosx+sinx]−12√2logtan(x2+π2k). Find the value of k.
Open in App
Solution
Let I=∫1secx+cosecxdx=∫sinxcosx(sinx+cosx)dx =12∫sin2xdx(sinx+cosx)=12∫(sinx+cosx)2−1sinx+cosxdx =12∫(sinx+cosx)dx−12∫dxsinx+cosx =12[−cosx+sinx]−12√2logtan(x2+π8)