The correct option is A 12logtanxtanx+2
Let I=∫1sin2x+sin2xdx=∫dxsin2x+2sinxcosx
Dividing numerator and denominator by cos2x, we get
I=∫sec2xdxtan2x+2tanx
Put tanx=t⇒sec2xdx=dt
Therefore
I=∫dtt2+2t=∫dtt(t+2)=12∫(12−1t+2)dt
=12[logt−log(t+2)]=12logtanxtanx+2
Hence, option 'A' is correct.