The correct option is
B 2tanx−2secx−x+c∫1−sin x1+sin xdx=∫(1−sin x)(1−sin x)(1+sin x)(1−sin x)⋅dx
=∫(1−sin x)2cos2x⋅dx
=∫1+sin2x−2sin xcos2x⋅dx
∫sec2x⋅dx+∫tan2x⋅dx−2∫tan x⋅sec x dx
∫sec2x⋅dx+∫(sec2x−1)⋅dx−2∫tan x⋅sec x dx
=2∫sec2x⋅dx−∫dx−2 ∫tan x sec x dx
=2 tan x−x−2sec x+c
∫1−sin x1+sin x⋅dx=2 tan x−x−2sec x+c