∫1tanx+cotx+secx+cosecxdx, taking c=0, we get I=1k(sinx−cosx−x) Find k
Open in App
Solution
Change in terms of sinx and cosxI=∫sinxcosx1+sinx+cosxdx=∫sinxdxsecx+tanx+1. Multiply above and below by (1+tanx)−secxI=∫sinx(1+tanx−secx)(1+tanx)−sec2xdx Dr=(1+tan2x)−sec2x+2tanx=0+2sinx/cosx ∴I=12∫cosx(1+sinxcosx−1cosx)dx∣=12∫(cosx+sinx−1)dx=12(sinx−cosx−x) Ans: 2