The correct option is
D
√x−1x+1+c
∫1(x+1)3/2(x−1)1/2dx
∫1x3/2⋅x1/2(1+1/x)3/2(1−1/x)dx
=∫dxx2(1+1/x)3/2(1−1/x)1/2
1x=t
−1/x2dx=dt⇒1/x2dx=−dt ∫−dt(1+t)3/2(1−t)1/2⋅
t=cos 2θ
dt=−2sin 2θ⋅dθ
=∫2sin 2θ dθ(2cos2θ)3/2(2sin2θ)1/2
=∫21sin θ cos θ4 cos2 θsin θ dθ
=∫sec2dθ=tan θ+c⋅
=√1−cos 2θ1+cos2θ+c
√1−1/x⋅1+1/x+c
=√x−1x+1+c⋅