The correct option is
C
13[12log|x−1x+1|−1√2tan−1x√2]+c
∫1(x2−1)(x2+2) dx=1/3∫(x2+2)−(x2−1)(x2−1)(x2+2) dx
= 1/3[∫1(x2−1) dx−∫1(x2+1) dx]
= 1/3[1/2∫(x+1)−(x−1)(x2−1) dx−∫1(x2+2) dx]
= 1/3[1/2[log(x−1)−log(x+1)]− 1/√2tan−1x/√2]+C
= 1/3[1/2 log∣∣∣x−1x+1∣∣∣− 1/√2 tan−1x/√2]+C