Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is CI=−12√3log∣∣
∣
∣
∣∣√x2+1x2+1−√3√x2+1x2+1+√3∣∣
∣
∣
∣∣+C Let I=∫(1+x2)dx(1−x2)√1+x2+x4=∫x2(1+1x2)dxx(1x−x)x√1x2+1+x2. =−∫(1+1x2)dx(1−1x)√(x−1x)2+3 Put x−1x=t⇒−∫dtt√t2+3 as (1+1x2)dx=dt Again, put t2+3=s2⟹2tdt=2sds =−∫sdss(s2−3)=−∫dss2−(√3)2