wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

(1+x2)dx(1x2)1+x2+x4=

A
I=123log∣ ∣ ∣ ∣x2+1x2+15x2+1x2+1+5∣ ∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I=143log∣ ∣ ∣ ∣x2+1x2+132x2+1x2+1+3∣ ∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
I=123log∣ ∣ ∣ ∣2x2+12x2+132x2+12x2+1+3∣ ∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
I=123log∣ ∣ ∣ ∣x2+1x2+13x2+1x2+1+3∣ ∣ ∣ ∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C I=123log∣ ∣ ∣ ∣x2+1x2+13x2+1x2+1+3∣ ∣ ∣ ∣+C
Let I=(1+x2)dx(1x2)1+x2+x4=x2(1+1x2)dxx(1xx)x1x2+1+x2.
=(1+1x2)dx(11x)(x1x)2+3
Put x1x=tdttt2+3 as (1+1x2)dx=dt
Again, put t2+3=s22tdt=2sds
=sdss(s23)=dss2(3)2

=123logs3s+3+C
=123logt2+33t2+3+3+C

=123log∣ ∣ ∣ ∣ ∣ ∣(x1x)2+33(x1x)2+3+3∣ ∣ ∣ ∣ ∣ ∣+C
I=123log∣ ∣ ∣ ∣x2+1x2+13x2+1x2+1+3∣ ∣ ∣ ∣+C

Hence, option D.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon