The correct option is D =12√2tan−1(x2−1√2x)−14√2log∣∣∣x2−√2x+1x2+x√2+1∣∣∣+C
I=∫1x4+1dx
=∫1x2x2+1x2dx
=12∫2x2x2+1x2dx
=12∫⎛⎜
⎜
⎜⎝1+1x2x2+1x2−1−1x2x2+1x2⎞⎟
⎟
⎟⎠dx
=12∫1+1x2x2+1x2dx−12∫1−1x2x2+1x2dx
=12∫1+1x2(x−1x)2+2dx−12∫1−1x2(x+1x)2−2
Putting x−1x=u in first integral and x+1x=ν in second integral, we get
I=12∫duu2+(√2)2−12∫dvν2−(√2)2
=12√2tan−1(u√2)−12×12√2log∣∣∣ν−√2ν+√2∣∣∣+C
=12√2tan−1⎛⎜
⎜
⎜⎝x−1x√2⎞⎟
⎟
⎟⎠−14√2log∣∣
∣
∣∣x+1x−√2x+1x+√2∣∣
∣
∣∣
=12√2tan−1(x2−1√2x)−14√2log∣∣∣x2−√2x+1x2+x√2+1∣∣∣+C