1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
∫1/x √x2 - 1 ...
Question
∫
1
x
√
x
2
−
1
d
x
is equal to :
A
cos
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sec
−
1
x
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cot
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tan
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
sec
−
1
x
+
C
Let
I
=
∫
1
x
√
x
2
−
1
d
x
Put
x
=
sec
θ
⟹
d
x
=
sec
θ
tan
θ
d
θ
∴
I
=
∫
sec
θ
tan
θ
sec
θ
√
sec
2
θ
−
1
d
θ
=
∫
sec
θ
tan
θ
sec
θ
tan
θ
d
θ
=
∫
d
θ
=
θ
+
C
=
sec
−
1
x
+
C
Hence,
∫
1
x
√
x
2
−
1
d
x
=
sec
−
1
x
+
C
Suggest Corrections
0
Similar questions
Q.
The value of
∫
e
x
(
x
2
tan
−
1
x
+
tan
−
1
x
+
1
)
d
x
x
2
+
1
is equal to
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
If
0
<
x
<
1
, then
√
1
+
x
2
[
{
x
c
o
s
(
c
o
t
−
1
x
)
+
s
i
n
(
c
o
t
−
1
x
)
}
2
−
1
]
1
/
2
is equal to
(a)
x
√
1
+
x
2
(b)
x
(c)
x
√
1
+
x
2
(d)
√
1
+
x
2
Q.
∫
x
2
+
cos
2
x
x
2
+
1
cosec
2
x
d
x
is equal to
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Solve
(a)
c
o
s
(
2
s
i
n
−
1
x
)
=
1
/
9
(b)
c
o
s
−
1
(
3
/
5
)
−
s
i
n
−
1
(
4
/
5
)
=
c
o
s
−
1
x
(c) If
s
i
n
(
s
i
n
−
1
1
5
+
c
o
s
−
1
x
)
=
1
, then prove that x is equal to
1
/
5
.
Q.
equals
A.
x
tan
−1
(
x
+ 1) + C
B. tan
− 1
(
x
+ 1) + C
C. (
x
+ 1) tan
−1
x
+ C
D. tan
−1
x
+ C