The correct option is
D 1x+log∣∣∣x5(x2−1)(x+1)3∣∣∣+c∫2x2−5x+1x2(x2−1)dx
=2x2−5x+1x2(x2−1)=Ax+Bx2+C(x−1)+D(x+1)
C=−22;D=−8+2;B=−1;A=5
C=−1;D=−4;B=−1;A=5
∫5xdx−∫1x2dx−∫1(x−1)dx−∫4(x+1)dx.
log∣x5∣+1x−log∣(x−1)∣−log∣(x+1)∣dx
1x+log∣x51∣+log∣(1x−1)∣+log∣(1(x+1)4)∣
1x+log∣x5(x2−1)(x+1)3∣+c