The correct option is A 25log|2x+1|−1115log|1−3x|+c
We can express the numerator as,
2x+3=A(2x+1)+B(1−3x)
Comparing the corresponding coefficients,
A = 115 and B=45
Thus,
∫2x+3(2x+1)(1−3x)dx=∫A(2x+1)dx+B(1−3x)(2x+1)(1−3x)dx
=∫A1−3xdx+∫B2x+1dx
=−1115×ln(1−3x)+25×ln(2x+1)+c
Hence, option 'A' is correct.