2x−3(x−1)(x+1)(2x+3)=Ax−1+Bx+1+C2x+3
2x−3(x−1)(x+1)(2x+3)=A(2x2+5x+3)+B(2x2+x−3)+c(x2−1)(x−1)(x+1)(2x+3)
2x−3=(2A+2B+c)x2+(5A+B)x+(3A−3B+c)
Compare,
2A+2B+c=0.....(1)
5A+B=2.......(2)
3A−3B−C=−3.....(3)
solve (1), (2) and (3) get
A=−110,B=52,C−245
∫(2x−3)dx(x−1)(x+1)(2x+3)=−110(x−1)+52(x+1)−245(2x+3)
Integrate both side.
=−110log|x−1|+52log|x+1|−125log|2x+3|+c