The correct option is B 2x−3tan−1(tanx2+1)+c
Let I=∫3+4sinx+2cosx3+2sinx+cosxdx
=∫6+4sinx+2cosx−33+2sinx+cosxdx
=∫2dx−3∫13+2sinx+cosxdx
=2x−3∫1+tan2x23(1+tan2x2)+4tanx2+1−tan2x2dx
=2x−3∫sec2x22tan2x2+4tanx2+4dx
Substitute tanx2=t
⇒sec2x212dx=dt
=2x−3∫22t2+4t+4dt
I=2x−3∫1(t+1)2+1dt
I=2x−3tan−1(t+1)+C
⇒I=2x−3tan−1(tanx2+1)+c