The correct option is C
32√2x2+4x+5−7√2sinh−1(√2(x+1)√3)+c
∫3x+4√2x2+4x+5dx
lets write
N(x)=μ(D1(x))+λ
3x−4=μ[4x+4]+λ
4μx=3x⇒μ= 3/4;λ=−7
∫N(x)√D(x)dx=∫μD1(x)√D(x)+∫λ√D(x)dx
2μ√D(x)+∫λ√D(x)dx
∫1√2x2+4x+5dx=∫1√2√x2+2x+1+3/2dx= 1/√2∫dx√(x+1)2+(√3/2)
=√2√3sin−1((x+1)√3√2)+c
=2(34)√2x2+4x+5−7√2sin−1(√2(x+1)√3)+c