The correct option is A -3/2
∫4e2x+69e2x−4⋅dx
Suppose N(x)=4ex+6e−x=4e2x+6,
and D(x)=9ex−4e−x=9e2x+4.
4e2x+6=A(D1(x))+B(D(x))
4e2x+6=A(18e2x)+B(9e2x−4)
−4B=6
B=−32;A=427
N(x)=427(D1(x))−32(D(x))
∫N(x)D(x)dx=∫427D1(x)D(x)−32∫D(x)D(x)dx+c
=427log[D(x)]−32x+c.
=427log[9e2x−4]−32x+c
A=−32