The correct option is D a=1,b= cosecα,f(x)=x,g(x)=ln∣∣
∣∣tanx2+cotα2tanx2−cotα2∣∣
∣∣
Let I=∫cosα+cosx+1cosα+cosxdx
Substitute u=tanx2⇒du=12sec2x2dx
I=∫2(cosα+1−u2u2+1+1)(u2+1)(cosα+1−u2u2+1)du
=2∫u2cosα+cosα+2(u2+1)(u2cosα+cosα−u2+1)du
=2∫1u2(cosα−1)+cosα+1du+2∫1u2+1du
=2∫1(cosα+1)(u2(cosα−1)cosα+1+1)+2∫1u2+1du
=1cosα+1⎛⎜
⎜
⎜
⎜⎝tan−1(u√−tan2a2)√−tan2a2⎞⎟
⎟
⎟
⎟⎠+2tan−1(u)
=cosecα⎛⎜
⎜⎝log∣∣
∣
∣∣tanx2+cota2tanx2−cota2∣∣
∣
∣∣⎞⎟
⎟⎠+x