Let cosx5−3cosx=l(5−3cosx)+m(3sinx)+n
Comparing coefficients of cosx,sinx and constant, we get
−3l=1,3m=0 and 5l+n=0
⇒l=−1/3,m=0 and n=5/3
Therefore
I=l∫5−3cosx5−3cosxdx+0+n∫dx5−3cosx
=−13∫dx+53∫dx5−3[cos2(x/2)−sin2(x/2)]
=−x3+53∫sec2(x/2)dx5[1+tan2(x/2)]−3(1−tan2(x/2))
Substitute tanx2=t⇒12sec2x2dx=dt
Hence
l=−13x+53∫2dt8t2+2=−13x+53∫dt4t2+1
=−13x+53.4∫dtt2+(12)2=−13x+512.11/2tan−1t1/2
=−13x+56tan−1[2tanx2]