The correct option is
A 12log|sin x-cos
x|−x2+cN(x)=cos x; D(x)=sin x−cos x
N(x)=λD1(x)+μ(D(x))
cos x=λ(cos x+sin x)+μ(sin x−cos x)
λ−μ=1λ+μ=0} λ=12;μ=−12
N(x)=12D1(x)−12D(x)
∫N(x)D(x) dx=12∫D1(x)D(x) −12∫D(x)D(x) dx
=12log|D(x)|−12x+c
=12log|(sin x−cos x)|−12x+c
∫cos xsin x−cos x dx=12log|sin x−cos x|−12x+c