The correct option is
A log√1+x−12log√1+x2+12tan−1x+c∫1x3+x2+x+1dx
=∫1(x+1)(x2+1)dx
=∫(12(x+1)−(x−1)2(x2+1))dx
=12∫1x+1dx−12∫x−1(x2+1)dx
=12ln(x+1)−12∫x−1x2−1dx
Substitute u=x2+1
dx=12xdx
=12ln(x+1)−12∫(xx2+1−1x2+1)dx
=12ln(x+1)−12[∫xx2+1dx−∫1x2+1dx]
=12ln(x+1)−12[12∫1xdx−∫1x2+1dx]
=12ln(x+1)−14ln(x2+1)−12tan−1x
=ln(x+1)2−ln(x2+1)4−tan−1x2.