The correct option is B 3(logx1/31+x1/3+11+3√x)+c
I=∫dxx(1+3√x)2
Put x1/3=t
13x−2/3dx=dt
⇒dx=3t2dt
So, I=3∫t2dtt3(1+t)2
I=3∫dtt(1+t)2
Resolving 1t(1+t)2 into partial fractions
1t(1+t)2=At+B(1+t)+C(1+t)2 .....(1)
⇒1=A(1+t)2+B(1+t)+Ct
⇒A=1,B=−1,C=−1
Put these values in (1),
1t(1+t)2=1t−1(1+t)−1(1+t)2
∫1t(1+t)2dt=∫1tdt−∫1(1+t)dt−∫1(1+t)2dt
∫1t(1+t)2dt=log|t|−log|1+t|+11+t+C
So, I=3(logx1/31+x1/3+11+3√x)+c