The correct option is B ln|x|√x2+1+12(x2+1)+K
Let I=∫dxx(x2+1)2
=∫xdxx2(x2+1)2
Put x2+1=t
⇒2xdx=dt
I=12∫1t2(t−1)dt
Now, 1t2(t−1)=At+Bt2+Ct−1
⇒1=At(t−1)+B(t−1)+Ct2
Put t=0⇒B=−1
Put t=1⇒C=1
Put t=−1⇒2A−2B+C=1
⇒A=−1
Hence, the integral becomes
I=−12∫1tdt−12∫1t2dt+12∫1t−1dt
=−12ln|t|−12−1t+12ln|t−1|+K
I=−12ln|x2+1|+121x2+1+12ln|x2|+K
I=ln|x|√x2+1+121x2+1+K