∫[e3x+exe4x−e2x+1]dx
∫e2x(e+1ex)(e4x−e2x+1)dx=∫[ex+1exe2x+1e2x+1]dx
ex−1ex=t(ex+1ex)dx=dt
∫dtt2+1=∫dtt2+1
11tan−1(t1)+c
tan−1(ex−e−x)+c
Let I =∫exe4x+e2x+1dx.J=∫e−xe−4x+e−2x+1dx,Then, for an arbitrary constant c, the value of J-I equals