Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
e√x(x−2√x+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
e√x(x+√x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e√x(x+√x+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2e√x(x−√x+1)+c Let√x=t⇒12√xdx=dt ∫e√x√x.(x+√x)dx =2∫et(t2+t)dt Using by parts =2[et(t2+t)−∫et(2t+1)dt] =2et(t2+t)−2[et(2t+1)−∫et(2)dt] =2et(t2+t)−2et(2t+1)+4et+c =2et(t2+t−2t−1+2)+c =2et(t2−t+1)+c =2e√x(x−√x+1)+c