The correct option is D √cos2xsinx−x−cotx×ln[e(cosx+√cos2x)]+c
Let I=∫ln(cosx+√cos2x)sin2xdx
=∫csc2xln[sinx(cotx+√cot2x−1)]dx
=∫ln(sinx)csc2xdx+∫ln(cotx+√cot2x−1)csc2xdx
=−ln(sinx)cotx−x+∫cot2xdx+I1
=−ln(sinx)cotx−cotx−x+I1
where I1=∫ln(cotx+√cot2x−1)csc2xdx
Put cotx=t⇒−csc2xdx=dt
∴I1=−∫ln(t+√t2−1)dt
=−[ln(t+√t2−1)]t−∫t.1+2t2√t2−1dtt+√t2−1dt
=−tln(t+√t2−1)+∫t√t2−1dt
=−tln(t+√t2−1)+√t2−1
=−cotxln(cotx+√cos2xsinx)+√cos2xsinx
∴I=√cos2xsinx−x−cotx−cotx(ln(cotx+√cos2x))+c