The correct option is
A −12cos(1+(logx)2)+c∫logx⋅sin(1+(logx)2)x⋅dx
logx=t
1xdx=dt
∫tsin(1+t2)⋅dt
∫tsin(1+t2)dt
Let t2=q
2tdt=dq
tdt=12dq
=∫12sin(1+q)
=12∫sin(1+q)dq
=−12cos(1+q)+c
=−12cos(1+t2)+c
∫logx⋅sin(1+(logx)2)x=−12cos[1+(logx)2]+c
Hence, option 'A' is correct.