The correct option is
D −2Given f(x)+f(y)=x+yxy∀x,yϵR=(0)
⇒f(x)=1x
Now g(θ)=∫−λ−(→a⋅→b)21x2dx+∫∣→a×→b∣2λ1x2dx−2λ
Here((→a⋅→b)2=∣→a∣2∣→b∣2cos2θ=cos2θ,∣→a×→b∣2=sin2θ
=[−1x]−λ−cos2θ+[−1x]sin2θλ−2λ=1λ−1cos2θ+−1sin2θ−(−1x)−2λ
=−1sin2θ−1cos2θ=−1sin2cos2θ=−4cosec22θ
∫π4π8−4cosec22θdθ
=−4[−cot2θ2]π4π8=2(0−1)=−2