∫sec2x√asec2x−btan2xdx is (where c is integration constant)
A
1√b−asin−1(tanx√b−aa)+c if b>a>0.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1√b−alog2(tanx√b−a+√asec2x−btan2x)+c if b>a>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√a−bsin−1(tanx√a−ba)+c if a>b>0.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1√a−bloge(tanx√a−b+√asec2x−btan2x)+c if a>b>0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A1√b−asin−1(tanx√b−aa)+c if b>a>0. B1√a−bloge(tanx√a−b+√asec2x−btan2x)+c if a>b>0 I=∫sec2x√asec2x−btan2xdx =∫sec2x√a(1+tan2x)−btan2xdx put tanx=t ⇒sec2xdx=dt ⇒I=∫dt√a+t2(a−b) Since we know, ∫dx√a2−x2=sin−1(xa)+c
∫dx√a2+x2=loge(x+√x2+a2)+c Now If a>b>0 I=∫dt√(√a)2+(t√a−b)2