The correct option is
D 2(tanx+secx)−x+c∵sec2x−tan2x=1
Hence, secx+tanx=1secx−tanx
So, secx+tanxsecx−tanx=(secx+tanx)2
=sec2x+tan2x+2secxtanx
Since the integral sign distributes across summation,
∫secx+tanxsecx−tanxdx=∫sec2xdx+∫tan2xdx+∫2secxtanxdx
=∫2sec2xdx−∫dx+∫2secxtanxdx ..... ∵sec2x−1=tan2x
=2tanx+2secx−x+c