The correct option is B (sin2x).(sin−1x)+c
∫sin2x.sec2xdx√1−x2sec2x+∫2tanx.sin−1x.sec2xdx.
=∫sin2x√1−x2dx+∫2tanx.sin−1xsec2xdx.
Integrating by parts for the first integral we get,
=sin2x∫1√1−x2dx−∫2sinx.cosx.sin−1xdx.+∫2sinx.cosx.sin−1xdx
=sin2x⋅sin−1x+c