The correct option is
A 1b2log|a2+b2sin2x|+cLet I=∫sin 2xa2+b2sin2xdx
=∫2 sin x cos xa2+b2sin2xdx
But cos x⋅dx=d sin x
∴I=∫2 sin x d sin xa2+b2sin2x
=∫dsin2xa2+b2sin2x
Let sin2x=t
Then,
I=∫dta2+b2t
=1b2log(a2+b2t)+c
=1b2log(a2+b2sin2x)+c
∫sin 2xa2+b2sin2xdx=1b2log|a2+b2sin2x|+c