The correct option is D tan−1(tan2x)+c
Given, ∫sin2xsin4x+cos4xdx
⇒ ∫2sinxcosxsin4x+cos4xdx
Now dividing numerator and denominator by cos4x , we have
∫2tanxsec2xtan4x+1dx
Now put tan2x=t ⇒ 2tanxsec2xdx=dt
⇒ ∫1t2+1dt
⇒ tan−1t+c=tan−1(tan2x)+c is the answer.