The correct option is
A −15x2(2sin(logx)+cos(logx))+cI=∫sin(logx)x3dx=sin(logx)∫1x3dx−∫cos(logx)1x(∫1x3dx)dx=−sin(logx)12x2+12∫cos(logx)x3dx......................................1.
I1=∫cos(logx)x3dx=cos(logx)∫1x3dx+∫sin(logx)1x(∫1x3dx)dx=−cos(logx)12x2−12∫sin(logx)x3dx=−cos(logx)12x2−I2
.By putting in
1∴I=−sin(logx)12x2+12(−cos(logx)12x2−I2)+C⇒5I4=−12x2(sin(logx)+12cos(logx))+C⇒I=−15x2(2sin(logx)+cos(logx))+c