∫sinxsin4xdx=−1klog1+sinx1−sinx+14√2log1+√2sinx1−√2sinx. Find the value of k.
Open in App
Solution
Let I=∫sinx2sin2xcos2xdx=∫dx4cosxcos2x=∫cosxdx4(1−sin2x)(1−2sin2x) Put sinx=t⇒cosxdx=dt I=∫dt4(1−t2)(1−2sin2x)=∫dt4(1−t2)(1−2t2)=14∫[21−2t2−11−t2]dt =12.12√2log1+√2t1−√2t−14.2log1+t1−t [∵∫1a2−x2dx=12aloga+xa−x]